Single Organ Segmentation
Filters for Multiple Organ Segmentation

Ruchaneewan Susomboon, Jacob D. Furst and Daniela S. Raicu

Intelligent Multimedia Processing Laboratory
DePaul University, Chicago, USA

2006 BioMedical Informatics Workshop
Chicago, Illinois, USA
Objective & Contributions

- Create automatic multiple-organ segmentation in Computed Tomography (CT) studies using pixel-level texture classification

- Apply single organ segmentations for each organ of interest in parallel

- Remove redundant pixel labels by comparing the region sizes and average probabilities over contested pixels.
Background

- Gray-level based segmentation
 - Gray-levels alone are not sufficient as many soft tissues have overlapping gray level ranges

- Shape-based segmentation
 - Organ shapes are different across different slides and across different patients

- Texture-based segmentation
 - Texture is expected to be homogenous and consistent across multiple slides for the same organ
Our Proposed Approach

- Applying, in parallel, single organ texture-based segmentation for each organ of interest

- Single-organ filtering:
 - Obtained via: 1) binary classification; 2) adaptive split-and-merge algorithm; and 3) region growing

- Remove redundant pixel labels by comparing of the region sizes and average probabilities over contested pixels.
Single Organ Segmentation

- Probability image of the organ of interest: Binary classification model obtained using pixel-based texture features
- Adaptive split-and-merge segmentation algorithm: Remove the noise introduced by misclassified pixels
- Region growing algorithm: Determine organ boundaries
Pixel-level Texture Extraction

Enhanced CT Images ➔ Features Extraction ➔ Feature Images ➔ Pixel-level classification ➔ Organ Probability Images ➔ Adaptive Split-&-Merge ➔ Adaptive Region Growing ➔ Organ Segmentation
Pixel-level Texture Extraction

- Consider texture around the pixel of interest.
- Capture texture characteristic based on estimation of joint conditional probability of pixel pair occurrences $P_{ij}(d, \theta)$.
 - P_{ij} denotes the normalized co-occurrence matrix of specify by displacement vector (d) and angle (θ).
Pixel-level Texture Extraction

Enhanced CT Images → Features Extraction → Feature Images → Pixel-level classification → Organ Probability Images → Adaptive Split- &- Merge → Adaptive Region Growing → Organ Segmentation
Classification

- Pixel-based texture classification: Classification and Regression Tree (C&RT) classifier is used to derive a set of rules for classifying pixels based on texture.

- Example of a rule,

 \[
 \text{IF} \quad [f_1(d, \theta; \gamma) < 0.34, 0.65 < f_5(d, \theta; \gamma) \leq 0.8]
 \]

 \[
 \text{THEN} \quad \text{Liver with}
 \]

 \[
 \text{PROBABILITY} = .9,
 \]

 denotes a rule obtained from a terminal node in which 90% of the pixels found at that node where indeed organ pixels.
Pixel-level Classification

- Liver Classification at a pixel level for different probability threshold

 (a) liver classification at 100%
 (b) liver classification at 90%
 (c) liver classification at 80%,
 (d) liver classification at 70%
Adaptive Split & Merge Segmentation

Enhanced CT Images → Features Extraction → Feature Images → Pixel-level classification → Organ Probability Images → Adaptive Split-&-Merge → Adaptive Region Growing → Organ Segmentation
Adaptive Split & Merge Segmentation

Probability Image → Initial Seed at 90% → Split & Merge at 85% → Split & Merge at 80%
Region Growing

Enhanced CT Images → Features Extraction → Feature Images → Pixel-level classification → Organ Probability Images → Adaptive Split- &- Merge → Adaptive Region Growing → Organ Segmentation
Region Growing

Split & Merge at 80%
Region growing at 70%
Region growing at 60%
Segmentation Result
Multiple Organ Segmentation

To merge all single organ filters, each of the pixels in the set of single-organ images are compared based on the following:

1. A pixel has not been classified, the pixel remains unclassified in the final segmentation.
2. A pixel has only labeled in one instance of a single-organ segmentation, that pixel retains its label in the final segmentation.
3. A pixel has multiple labels, a decision will be made based on
 - Size of the region containing that pixel
 - Average probability of the labels for each pixel in the region
Experimental Results

- **Data**
 - Normal CT studies from Northwestern Memorial Hospital (NMH) PACS.
 - DICOM format of size 512 by 512 and having 12-bit gray level resolution.

- **Pixel-Level Texture Extraction**
 - Haralick co-occurrence feature with 9x9 window size

- **Pixel-based Texture Classification**
 - Binary Classification and Regression Tree (C&RT)
 - Randomly select pixels from one CT slide in which the organ of interest was present: 50% of total pixels are from the organ of interest class
 - Model evaluation: 66% for training and 34% for testing.
Experimental Results

Liver

Spleen

Kidney

10/13/2006

2006 BioMedical Informatics Workshop
Conclusion & Future Works

- The use of multiple segmentation filters is no longer an “all or nothing” approach in which every pixel in the image must have assigned a segment label;

- Segmentation can be iteratively improved as information on new organs becomes available to generate new segmentation filters.

Future works

- Three dimensional (3D) texture extraction and 3D segmentation algorithms.
- Generate hierarchical segmentations supported by ontological labels.
References

Questions
Haralick Texture

Entropy: measure the randomness of gray-level distribution
\[-\sum_{i}^{M} \sum_{j}^{N} P_{ij} \log P_{ij}\]

Energy: measure the occurrence of repeated pairs within an image
\[\sum_{i}^{M} \sum_{j}^{N} P_{ij}^2\]

Contrast: capture the local contrast in an image
\[\sum_{i}^{M} \sum_{j}^{N} (i - j)^2 P_{ij}\]

Homogeneity: measure the homogeneity of the image
\[\sum_{i}^{M} \sum_{j}^{N} \frac{P_{ij}}{|i - j|} ; i \neq j\]

Sum Average: provide the mean of the gray intensity within an image
\[\frac{1}{2} \sum_{i}^{M} \sum_{j}^{N} (iP_{ij} + jP_{ij})\]

Variance: estimate the variation of gray level distribution
\[\frac{1}{2} \sum_{i}^{M} \sum_{j}^{N} ((i - \mu_i)^2 P_{ij} + (j - \mu_j)^2 P_{ij})\]
Haralick Texture

Correlation: measure a correlation of pixel pairs on gray-levels
\[\sum_{i}^{M} \sum_{j}^{N} \frac{(i - \mu_r)(j - \mu_c)P_{ij}}{\sqrt{\sigma_r^2 \times \sigma_c^2}} \]

Maximum Probability: represent the most predominant pixel pair in an image
\[\max_{i,j} P_{ij} \]

Inverse Difference Moment: measure the smoothness of an image
\[\sum_{i}^{M} \sum_{j}^{N} \frac{P_{ij}}{1 + (i - j)^2} \]

Cluster Tendency: measure the grouping of pixels that have similar gray-level values
\[\sum_{i}^{M} \sum_{j}^{N} (i - \mu_r + j - \mu_c)^2 P_{ij} \]

where \(\mu_r, \mu_c, \sigma_r^2, \sigma_c^2 \) are the mean and variance of row and column defined as follow:
\[\mu_r = \sum_{i}^{M} \sum_{j}^{N} iP_{ij}, \quad \mu_c = \sum_{i}^{M} \sum_{j}^{N} jP_{ij} \]
\[\sigma_r = \sum_{i}^{M} \sum_{j}^{N} (i - \mu_r)^2 P_{ij}, \quad \sigma_c = \sum_{i}^{M} \sum_{j}^{N} (j - \mu_c)^2 P_{ij} \]
Clipped-binning

- **Clipped binning technique** (Lerman et al., 2006) is applied to enhance the contrast within the soft tissues necessary for good texture feature extraction.

- The clipped binning technique incorporates
 1. K-means algorithm that automatically determines the range of the gray levels for the soft tissues in the given CT images
 2. Gray-levels that are lower than the soft tissue range and the gray-levels that are higher than the soft tissue range will be assigned to the minimum bin and maximum bin, respectively; the gray values within the soft tissue range will be linearly divided into equal bins.